Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 291
Filtrar
1.
Braz. j. biol ; 83: 1-7, 2023. tab
Artículo en Inglés | LILACS, VETINDEX | ID: biblio-1468883

RESUMEN

The low Brazilian productive index and the high demand have aroused interest in the cultivation of lentils, however the legume is little known and needs further studies. The objective of this study was to analyze and identify the effects of treatments with insecticides and fungicides on the physiological quality of lentil seeds, CA-1512 strain. The experiments were conducted in the seed laboratory in a completely randomized design with seven treatments and four replicates. Seed treatment with Thiophanate-methyl; Fluazinam® (180 ml) + Pyraclostrobin; Thiophanate-methyl; Fipronil® (150 ml) promoted higher levels of germination under accelerated aging, lower number of abnormal seedlings and longer lengths of shoot and radicle for the emergence in paper. Treatment with Carboxin; Thiram® (250 ml) + Imidacloprid® (150 ml) allowed a higher value in the first count of germination in sand, lower number of dead seeds under accelerated aging and longer root length, in the emergence in sand. Shoot length in the emergence in sand increased after seed treatment with Metalaxyl-M; Fludioxonil® (75 ml) + Pyraclostrobin; Thiophanate-methyl; Fipronil® (150 ml). Treatments with fungicides and insecticides considerably improved the physiological properties of the seeds, thus being able to guarantee greater phytosanitary qualities in the field, generating healthier seedlings and with protection against possible pests and diseases, and consequently guaranteeing greater productivity.


O baixo índice produtivo brasileiro e a alta demanda têm despertado o interesse no cultivo da lentilha, porém a leguminosa é pouco conhecida e necessita maiores estudos. Objetivou-se neste trabalho analisar e identificar tratamentos com inseticidas e fungicidas na qualidade fisiológica das sementes de lentilha, linhagem CA-1512. Os experimentos foram conduzidos no laboratório de sementes em delineamento inteiramente casualizado com sete tratamentos e quatro repetições. O tratamento de semente com Tiofanato-metílico; Fluazinam® (180 ml) + Piraclosrobina; Tiofanato-metílico; Fipronil® (150 ml) proporcionou índices mais elevados de germinação no envelhecimento acelerado, menor número de plântulas anormais e maior comprimento de parte aérea e radícula, na emergência em papel. O tratamento com Carboxina; Tiram® (250 ml) + Imidacloprido® (150 ml) possibilitou maior índice na primeira contagem de germinação em areia, menor número de sementes mortas no envelhecimento acelerado e maior comprimento de raiz, na emergência em areia. Já o comprimento da parte aérea, na emergência em areia, aumentou com o tratamento de semente Metalaxil-M; Fludioxonil® (75 ml) + Piraclosrobina; Tiofanato-metílico; Fipronil® (150 ml). Os tratamentos com fungicidas e inseticidas melhoraram consideravelmente as propriedades fisiológicas das sementes, podendo assim, garantir maiores qualidades fitossanitárias à campo, gerando plântulas mais sadias e com proteção para possíveis pragas e doenças, e consequentemente garantindo maiores produtividades.


Asunto(s)
Fungicidas Industriales/administración & dosificación , Insecticidas/administración & dosificación , Lens (Planta)/efectos de los fármacos , Lens (Planta)/fisiología , Semillas/crecimiento & desarrollo
2.
Arq. Inst. Biol ; 90: e00102022, 2023. graf
Artículo en Inglés | VETINDEX, LILACS | ID: biblio-1447285

RESUMEN

The obstacles in Phakopsora pachyrhizi management result especially from susceptible soybean genotypes and resistant fungal strains. The objective of the current study was to evaluate the applicability of the emission of extremely low and specific frequencies by Effatha technology in the soybean Asian rust control, nutrition, and its impact on yield. The in-vivo test followed the detached leaves method, with six treatments: frequencies 1 and 2 individually and in association; the conventional chemical treatment (fungicide azoxystrobin + benzovindiflupyr); and witnesses in presence and absence of the fungus. Frequency 1 relates to inhibition of the enzyme succinate dehydrogenase and 2 to ubiquinone oxidase. In the field, frequencies 1 and 2 associated (with the same fungicidal action of the in-vivo study); nutritional frequency; application of azoxystrobin + benzovindiflupyr + mancozeb, and control without application were evaluated. In vivo, the fungicide provided 85% control of the disease symptoms, against 65% of frequencies 1 and 2 in association, which showed a higher efficiency compared to the isolated frequencies. In the field, the rate of increase of symptoms were reduced by all treatments compared to the control. At the end of the soybean cycle, the conventional fungicide resulted in 33% severity against 56% of frequencies 1 and 2 associated, and 69.2% of the control. The emission of the frequency for increased nutrient efficiency stood out positively on yield in relation to all the other ones. The conventional application provided the highest weight of 1,000 grains, possibly a direct reflection of the better control of the disease.


Asunto(s)
Soja , Imágenes Satelitales/métodos , Phakopsora pachyrhizi , Fungicidas Industriales/administración & dosificación
3.
Int J Mol Sci ; 23(3)2022 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-35163447

RESUMEN

Botrytis cinerea is considered an important plant pathogen and is responsible for significant crop yield losses. With the frequent application of commercial fungicides, B. cinerea has developed resistance to many frequently used fungicides. Therefore, it is necessary to develop new kinds of fungicides with high activity and new modes of action to solve the increasingly serious problem of resistance. During our screening of fungicide candidates, one novel sulfonamide compound, N-(2-trifluoromethyl-4-chlorphenyl)-2-oxocyclohexyl sulfonamide (L13), has been found to exhibit good fungicidal activity against B. cinerea. In this work, the mode of action of L13 against B. cinerea and the field control effect on tomato gray mold was studied. L13 had good control against B. cinerea resistant to carbendazim, diethofencarb, and iprodione commercial fungicides in the pot culture experiments. SEM and TEM observations revealed that L13 could cause obvious morphological and cytological changes to B. cinerea, including excessive branching, irregular ramification or abnormal configuration, and the decomposition of cell wall and vacuole. L13 induced more significant electrolyte leakage from hyphae than procymidone as a positive control. L13 had only a minor effect on the oxygen consumption of intact mycelia, with 2.15% inhibition at 50 µg/mL. In two locations over 2 years, the field control effect of L13 against tomato gray mold reached 83% at a rate of 450 g ai ha-1, better than the commercial fungicide of iprodione. Moreover, toxicological tests demonstrated the low toxicological effect of L13. This research seeks to provide technical support and theoretical guidance for L13 to become a real commercial fungicide.


Asunto(s)
Botrytis/crecimiento & desarrollo , Fungicidas Industriales/farmacología , Enfermedades de las Plantas/prevención & control , Solanum lycopersicum/crecimiento & desarrollo , Sulfonamidas/farmacología , Administración Cutánea , Administración Oral , Animales , Botrytis/efectos de los fármacos , Botrytis/metabolismo , Pared Celular/efectos de los fármacos , Farmacorresistencia Fúngica , Fungicidas Industriales/administración & dosificación , Fungicidas Industriales/efectos adversos , Solanum lycopersicum/microbiología , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Estructura Molecular , Conejos , Ratas , Piel/efectos de los fármacos , Sulfonamidas/administración & dosificación , Sulfonamidas/efectos adversos , Vacuolas/efectos de los fármacos , Vacuolas/metabolismo
4.
Arch Toxicol ; 96(2): 559-570, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35048155

RESUMEN

Prothioconazole (PTC) is a new broad-spectrum triazole antibacterial agent that is being widely used in agriculture. PTC has been linked to a number of reproductive outcomes including embryo implantation disorder; however, the exact mechanism underlying this relationship has yet to be determined. Proper trophoblast proliferation and migration is a prerequisite for successful embryo implantation. To elucidate the underlying molecular perturbations, we detect the effect of PTC on extravillous trophoblast cells proliferation and migration, and investigate its potential mechanisms. Exposure to different concentrations of PTC (0-500 µM) significantly inhibited the cell viability and migration ability (5 µM PTC exposure), and also caused the cell cycle arrest at the lowest dose (1 µM PTC exposure). Transcriptome analysis revealed that PTC exposure disturbed multiple biological processes including cell cycle and apoptosis, consistent with cell phenotype. Specifically, eukaryotic translation initiation factor 4E binding protein 1 (EIF4EBP1, 4E-BP1) was identified as up-regulated in PTC exposure group and knockdown of EIF4EBP1, and attenuated the G1 phase arrest induced by PTC exposure. In summary, our data demonstrated that 4E-BP1 participated in PTC-induced cell cycle arrest in extravillous trophoblast cells by regulating cyclin D1. These findings shed light on the potential adverse effect of PTC exposure on the embryo implantation.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Puntos de Control del Ciclo Celular/efectos de los fármacos , Proteínas de Ciclo Celular/genética , Triazoles/toxicidad , Trofoblastos/efectos de los fármacos , Línea Celular , Movimiento Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Ciclina D1/metabolismo , Relación Dosis-Respuesta a Droga , Femenino , Fungicidas Industriales/administración & dosificación , Fungicidas Industriales/toxicidad , Técnicas de Silenciamiento del Gen , Humanos , Triazoles/administración & dosificación , Trofoblastos/citología , Regulación hacia Arriba/efectos de los fármacos
5.
Arq. Inst. Biol. (Online) ; 89: e00542020, 2022. graf
Artículo en Inglés | LILACS, VETINDEX | ID: biblio-1416894

RESUMEN

The São Francisco Sub medium Valley is a great mango exporter in Brazil. In this semiarid region, diseases such as dieback and mango malformation have reduced the production of this crop. In this work the effectiveness of different active ingredients (flutriafol, methyl-thiophanate, copper hydroxide and fluxapyroxad mixed with pyraclostrobin) was assessed for the control of these diseases in a mango orchard. Monthly assessments of disease incidence were carried out. There was a difference among treatments for the two diseases studied, with flutriafol as the most effective fungicide against dieback and, for the malformation, the mixture of fluxapyroxad and pyraclostrobin and methyl-thiophanate showed the best results.


Asunto(s)
Ascomicetos , Control de Plagas/métodos , Mangifera/crecimiento & desarrollo , Fungicidas Industriales/administración & dosificación
6.
Ciênc. rural (Online) ; 52(2): e20210027, 2022. tab
Artículo en Inglés | LILACS, VETINDEX | ID: biblio-1286051

RESUMEN

Anticarsia gemmatalis (Hübner: 1818) (Lepidoptera: Erebidae) is one of the main pests that affect soybean crops, causing defoliation. In the vegetative stages, defoliation occurs together with weeds, and in the reproductive stages with pathogens. In this sense, to maintain plant health, it is necessary to carry out the combined use of pesticides. Thus, this research determined the compatibility of the entomopathogenic virus AgMNPV with the main herbicides and fungicides used in soy at different times of the mixture. The artificial diet was immersed in the solutions of the pesticides and their mixtures and supplied to A. gemmatalis caterpillars, immediately and after one and two hours of mixing. The evaluation was performed by quantifying the number of dead caterpillars by mixing the AgMNPV virus with herbicides and fungicides, even after two hours of mixing if compatible. The observed scenarios showed a compatibility of the virus with the herbicides and fungicides, with mortality rates between 70 to 99% for A. gemmatalis.


Anticarsia gemmatalis (Hübner: 1818) (Lepidoptera: Erebidae) é uma das principais pragas que acometem a cultura da soja, causando desfolha. Nos estágios vegetativos a desfolha ocorre juntamente com ervas daninhas, e no reprodutivo com patógenos. Nesse sentido, para manter a fitossanidade, é necessário realizar a utilização combinada de pesticidas. Assim, o objetivo do presente trabalho foi determinar a compatibilidade do vírus entomopatogênico AgMNPV com os principais herbicidas e fungicidas utilizados na soja em diferentes tempos de mistura. A dieta artificial foi imersa nas soluções dos pesticidas e suas misturas e fornecida às lagartas de A. gemmatalis, imediatamente e após uma e duas horas de mistura. A avaliação foi realizada quantificando o número de lagartas mortas. A mistura do vírus AgMNPV com herbicidas e fungicidas, mesmo após duas horas de mistura se mostrou compatível. Os cenários observados mostram a compatibilidade do vírus com os herbicidas e fungicidas, com percentuais de mortalidade entre 70 a 99% para A. gemmatalis.


Asunto(s)
Control Biológico de Vectores/métodos , Nucleopoliedrovirus , Fungicidas Industriales/administración & dosificación , Herbicidas/administración & dosificación , Lepidópteros
7.
Ciênc. rural (Online) ; 52(2): e20210260, 2022. tab
Artículo en Inglés | LILACS, VETINDEX | ID: biblio-1286062

RESUMEN

In the last crop seasons, the complex of late season diseases (CLSD) of soybean (Glycine max L. (Merrill)), has been causing considerable reductions in the crop yield. Currently, there are no cultivars resistant to all pathogens that causes CLSD. The present study evaluated the effect of applying the acibenzolar-S-methyl resistance inducer, alternative products and fungicide on the severity of CLSD in the soybean cultivar BMX Potência RR during the 2013/2014 and 2014/2015 crops, in the field. The treatments for the experiments were: 1 - control (water); 2 - acibenzolar-S-methyl; 3 - calcium; 4 - micronutrients: copper, manganese and zinc; 5 - micronutrients: manganese, zinc and molybdenum; 6 - nitrogen-potassium fertilizer; 7 - Ascophyllum nodosum and 8 - azoxystrobin + cyproconazole with the addition of the adjuvant. Four applications of alternative products and two of fungicide were carried out in both harvests. A diagrammatic scale assessed the severity of CLSD at the phenological stage R7.1. The acibenzolar-S-methyl resistance inducer, alternative products (macro and micronutrients) and A. nodosum had no effect on the severity of CLSD in the two harvests. The fungicide (azoxystrobin + cyproconazole) reduced the severity of CLSD and prevented damage to productivity in both experiments.


Nas últimas safras, o complexo de doenças de final de ciclo (DFC) da soja (Glycine max L. (Merrill)), vem provocando reduções consideráveis no rendimento da cultura. Atualmente, não há variedades resistentes a todos os patógenos causadores das DFC. O objetivo do presente trabalho foi avaliar o efeito da aplicação do indutor de resistência acibenzolar-S-methyl, produtos alternativos e fungicida na severidade de DFC na cultivar de soja BMX Potência RR durante as safras 2013/2014 e 2014/2015, em campo. Os tratamentos para os experimentos foram: 1 - testemunha (água); 2 - acibenzolar-S-methyl; 3 - cálcio; 4 - micronutrientes: cobre, manganês e zinco; 5 - micronutrientes: manganês, zinco e molibdênio; 6 - adubo NK; 7 - Ascophyllum nodosum e 8 - azoxistrobina + ciproconazol com adição do adjuvante. Foram realizadas quatro aplicações dos produtos alternativos e duas do fungicida, nas duas safras. A severidade de DFC foi avaliada por escala diagramática no estádio fenológico R7.1. O indutor de resistência acibenzolar-S-methyl, os produtos alternativos (macro e micronutrientes) e A. nodosum não apresentaram efeito sobre a severidade das DFC nas duas safras. O fungicida (azoxistrobina + ciproconazol) reduziu a severidade das DFC e evitou danos a produtividade nos dois experimentos.


Asunto(s)
Soja/microbiología , Fungicidas Industriales/administración & dosificación , Cercospora , Cultivos Agrícolas
8.
Ciênc. rural (Online) ; 52(10): e20210380, 2022. tab
Artículo en Inglés | LILACS, VETINDEX | ID: biblio-1364725

RESUMEN

The study evaluated the efficacy and soybean spectral responses to fifteen foliar fungicide mixtures labeled to control Asian soybean rust. Canopy level reflectance was measured using a multispectral camera onboard a multirotor drone before and two hours after each spray. The third application of fungicides improved control of soybean rust and increased yield. Nevertheless, up to three consecutive foliar fungicides applications did not affect the reflectance of soybean plants at visible and infrared wavelengths. Thus, drones can be a viable strategy for data acquisition regardless of the application of the fungicides.


Esse estudo avaliou a eficácia e as respostas espectrais de plantas de soja a quinze misturas de fungicidas utilizados no controle da ferrugem asiática da soja (FAS). A refletância do nível do dossel foi medida usando uma câmera multiespectral a bordo de um drone multirotor antes e duas horas após cada pulverização. A terceira aplicação de fungicidas melhorou o controle de FAS e aumentou a produtividade. Porém, três aplicações foliares consecutivas de fungicidas não afetaram a refletância de plantas de soja nos comprimentos de onda visível e infravermelho. Assim, drones podem ser uma estratégia viável para aquisição de dados independentemente da aplicação de fungicidas.


Asunto(s)
Soja/fisiología , Fungicidas Industriales/administración & dosificación , Fungicidas Industriales/análisis , Agricultura Sostenible , Imágenes Hiperespectrales/métodos
9.
Chem Res Toxicol ; 34(12): 2441-2449, 2021 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-34793142

RESUMEN

Triazole fungicides are widely used in agriculture that leads to pollution of freshwater ecosystems. The mechanisms of toxicity to fish by the triazole fungicide Topas that contains penconazole (1-[2-(2,4-dichlorophenyl)pentyl]-1H-1,2,4-triazole) have not been studied. The present study aimed to evaluate the effect of goldfish exposure for 96 h to the fungicide Topas at concentrations of 1.5, 15, or 25 mg/L on the plasma and liver biochemical parameters and blood hematological profile. Goldfish exposure to Topas decreased alanine and aspartate transaminase activity and increased lactate dehydrogenase activity in the liver. Plasma lactate dehydrogenase and alanine transaminase activities were elevated in fungicide-treated fish. Topas exposure also enhanced plasma glucose and triacylglycerol concentrations. In the liver, fungicide treatment decreased levels of glucose but elevated triacylglycerols, glycogen, and protein. The results indicate that acute exposure of goldfish to Topas induced strong metabolic perturbations and disruptions of metabolic parameters, suggesting that these could be used to assess sublethal or acute toxic effects of pesticides on aquatic species.


Asunto(s)
Fungicidas Industriales/toxicidad , Glucosa/antagonistas & inhibidores , Hígado/efectos de los fármacos , Triazoles/toxicidad , Animales , Relación Dosis-Respuesta a Droga , Fungicidas Industriales/administración & dosificación , Fungicidas Industriales/química , Glucosa/metabolismo , Carpa Dorada , Hígado/metabolismo , Estructura Molecular , Triazoles/administración & dosificación , Triazoles/química
10.
Arch Toxicol ; 95(12): 3777-3786, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34635929

RESUMEN

Thifluzamide is widely used fungicide and frequently detected in aquatic system. In this study, the toxicity of fungicide thifluzamide to non-targeted aquatic organisms was investigated for neuroendocrine disruption potentials. Here, zebrafish embryos were exposed to a series of concentrations of thifluzamide for 6 days. The results showed that both the development of embryos/larvae and the behavior of hatched larvae were significantly affected by thifluzamide. Importantly, the decreased activity of acetylcholinesterase (AchE) and the increased contents of neurotransmitters such as serotonin (5-HT) and norepinephrine (NE), along with transcriptional changes of nervous system related genes were observed following 4 days exposure to thifluzamide. Besides, the decreased contents of triiodothyronine (T3) and thyroxine (T4) in whole body, as well as significant expression alteration in hypothalamic-pituitary-thyroid (HPT) axis associated genes were discovered in zebrafish embryos after 4 days of exposure to thifluzamide. Our results clearly demonstrated that zebrafish embryos exposed to thifluzamide could disrupt neuroendocrine, compromise behavior and induce developmental abnormality, suggesting impact of this fungicide on developmental programming in zebrafish.


Asunto(s)
Anilidas/toxicidad , Disruptores Endocrinos/toxicidad , Fungicidas Industriales/toxicidad , Tiazoles/toxicidad , Acetilcolinesterasa/metabolismo , Anilidas/administración & dosificación , Animales , Relación Dosis-Respuesta a Droga , Embrión no Mamífero/efectos de los fármacos , Disruptores Endocrinos/administración & dosificación , Fungicidas Industriales/administración & dosificación , Sistema Hipotálamo-Hipofisario/efectos de los fármacos , Larva/efectos de los fármacos , Norepinefrina/metabolismo , Serotonina/metabolismo , Tiazoles/administración & dosificación , Hormonas Tiroideas/metabolismo , Pez Cebra
11.
Toxicology ; 462: 152932, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34508824

RESUMEN

Triadimefon is a broad-spectrum antifungal agent, which is widely used in agriculture to control mold and fungal infections. It is considered an endocrine disruptor. Whether triadimefon exposure can inhibit the development of fetal adrenal glands and the underlying mechanism remain unclear. Thirty-two pregnant female Sprague-Dawley rats were randomly divided into four groups. Dams were gavaged triadimefon (0, 25, 50, and 100 mg/kg/day) daily for 10 days from gestational day (GD) 12 to GD 21. Triadimefon significantly reduced the thickness of the zona fasciculata of male fetuses at 100 mg/kg, although it did not change the thickness of the zona glomerulosa. It significantly reduced the serum aldosterone levels of male fetuses at a dose of 100 mg/kg, and significantly reduced serum corticosterone and adrenocorticotropic hormone levels at doses of 50 and 100 mg/kg. Triadimefon significantly down-regulated the expression of Agtr1, Mc2r, Star, Cyp11b1, Cyp11b2, Igf1, Nr5a1, Sod2, Gpx1, and Cat, but did not affect the mRNA levels of Scarb1, Cyp11a1, Cyp21, Hsd3b1, and Hsd11b2. Triadimefon markedly reduced AT1R, CYP11B2, IGF1, NR5A1, and MC2R protein levels. Triadimefon significantly reduced the phosphorylation of AKT1 and ERK1/2 at 100 mg/kg without affecting the phosphorylation of AKT2. In contrast, it significantly increased AMPK phosphorylation at 100 mg/kg. In conclusion, exposure to triadimefon during gestation inhibits the development of fetal adrenal cortex in male fetuses. This inhibition is possibly due to the reduction of several proteins required for the synthesis of steroid hormones, and may be involved in changes in antioxidant contents and the phosphorylation of AKT1, ERK1/2, and AMPK.


Asunto(s)
Glándulas Suprarrenales/efectos de los fármacos , Fungicidas Industriales/toxicidad , Exposición Materna/efectos adversos , Triazoles/toxicidad , Corteza Suprarrenal/efectos de los fármacos , Corteza Suprarrenal/embriología , Glándulas Suprarrenales/embriología , Animales , Antioxidantes/metabolismo , Relación Dosis-Respuesta a Droga , Disruptores Endocrinos/administración & dosificación , Disruptores Endocrinos/toxicidad , Femenino , Fungicidas Industriales/administración & dosificación , Masculino , Fosforilación/efectos de los fármacos , Embarazo , Ratas , Ratas Sprague-Dawley , Triazoles/administración & dosificación
12.
PLoS One ; 16(6): e0253659, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34161390

RESUMEN

BACKGROUND: Stem-end rot, caused by Lasiodiplodia theobromae (Pat.) Griffon & Maubl is a serious postharvest disease in mango. In China, a high prevalence of the QoI fungicides resistance has been reported in the last decade. The study aimed to discuss factors determining rapid development of pyraclostrobin-resistance and its resistance mechanisms. METHODS: To determine the resistance stability and fitness of pyraclostrobin resistance in L. theobromae, three phenotypes of pyraclostrobin resistance were compared and analyzed for the EC50 values, mycelial growth, virulence and temperature sensitivity and osmotic stress sensitivity. The relative conductivity and enzyme activities of different phenotypes were compared under fungicide stress to explore possible biochemical mechanisms of pyraclostrobin resistance in L. theobromae. The Cytb gene sequences of different phenotypes were analysed. RESULTS: All isolates retained their original resistance phenotypes during the 10 subcultures on a fungicide-free PDA, factor of sensitivity change (FSC) was approximately equal to 1. The resistance-pyraclostrobin of the field isolates should be relatively stable. Two pyraclostrobin-resistant phenotypes shared similar mycelial growth, virulence and temperature sensitivity with pyraclostrobin-sensitive phenotype. After treated by pyraclostrobin, the relative conductivity of the sensitive phenotype was significantly increased. The time of Pyr-R and Pyr-HR reached the most conductivity was about 8-10 times than that of Pyr-S, the time for the maximum value appearance showed significant differences between sensitive and resistant phenotypes. The activities of Glutathione S-transferase (GST), catalase (CAT) and peroxidase (POD) of Pyr-HR were 1.78, 5.45 and 1.65 times respectively, significantly higher than that of Pyr-S after treated by 200 mg/l pyraclostrobin. CONCLUSION: The results showed that the pyraclostrobin-resistant phenotypes displayed high fitness and high-risk. The nucleotide sequences were identical among all pyraclostrobin-resistant and -sensitive isolates. The pyraclostrobin resistance was not attributable to Cytb gene alterations, there may be some of other resistance mechanisms. Differential response of enzyme activity and cell membrane permeability were observed in resistant- and sensitive-isolates suggesting a mechanism of metabolic resistance.


Asunto(s)
Ascomicetos/efectos de los fármacos , Farmacorresistencia Fúngica/efectos de los fármacos , Fungicidas Industriales/administración & dosificación , Mangifera/microbiología , Enfermedades de las Plantas/microbiología , Estrobilurinas/administración & dosificación
13.
Arch Toxicol ; 95(3): 1071-1079, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33245377

RESUMEN

The fungicide Iprodione is widely applied in vegetables and raises concern for human health. The A549 human lung carcinoma cell line is a suitable model for assessing the toxicological effects of drugs. The goal of this work was to evaluate the genotoxicity and oxidative stress in the A549 cell line exposed to sublethal concentrations from 3 to 100 µg/mL Iprodione considering LC50 = 243.4 µg/mL Iprodione, as determined by the MTT assay. Generalized Linear Mixed Models (GLMM) were performed to determine the association between the responses NDI, MNim and MNib and the explanatory variables. Iprodione and solvent were relativized to the control whereas the concentration was included as numeric variable. ANOVA was used for the comparison of treatments. The coefficients of linear association between the explanatory variables and NDI, and the coefficients of logistic association between explanatory variables and MNim were not significant. However, these coefficients showed significant association with MNib only for Iprodione treatment but not for Iprodione concentration, indicating lack of dose-response relationship. Genotoxicity risk assessment indicated that the increase in Iprodione concentrations increased slightly the probability of belonging to the genotoxic category. ANOVA showed significant differences in MNib, and non-significant differences in NDI and MNim among treatments. The oxidative stress analysis performed at 3, 12, and 25 µg/mL Iprodione showed a significant and linear increase in SOD, and a significant and linear decrease in GSH and GST. The Dunnett test was significant for GSH at 12 and SOD at 25 µg/mL.


Asunto(s)
Aminoimidazol Carboxamida/análogos & derivados , Fungicidas Industriales/toxicidad , Hidantoínas/toxicidad , Mutágenos/toxicidad , Estrés Oxidativo/efectos de los fármacos , Células A549 , Aminoimidazol Carboxamida/administración & dosificación , Aminoimidazol Carboxamida/toxicidad , Relación Dosis-Respuesta a Droga , Fungicidas Industriales/administración & dosificación , Humanos , Hidantoínas/administración & dosificación , Dosificación Letal Mediana , Neoplasias Pulmonares/metabolismo , Pruebas de Mutagenicidad , Mutágenos/administración & dosificación , Medición de Riesgo , Superóxido Dismutasa/metabolismo
14.
Drug Chem Toxicol ; 44(5): 550-557, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32498565

RESUMEN

Azoxystrobin is a broad-spectrum fungicide used worldwide. Since azoxystrobin spreads to large areas, its toxic effects on non-target organisms have aroused interest. In this study, the acute toxicity (96 h) of azoxystrobin on the crayfish (Astacus leptodactylus) was examined by using various biomarkers. The 96 h-LC50 dose (1656 mg L-) and its three sub-doses (828, 414, 207 mg L-1) were applied to crayfish. Superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities were increased significantly compared to the control in hepatopancreas, gill and muscle tissues. The activities of acetylcholinesterase (AChE) and glutathione S-transferase (GST) increased, and glutathione reductase (GR) activity decreased significantly in hepatopancreas. Level of reduced glutathione (GSH) decreased significantly. The content of malondialdehyde (MDA) increased in a dose-dependent manner in all azoxystrobin treatments with the exception of the lowest dose (207 mg L-1)treatment. ATPases (Na+/K+ -ATPase, Mg2+ -ATPase, Ca2+ -ATPase, total ATPase) were significantly inhibited in gill and muscle tissues. The results of the present study indicate that azoxystrobin induces oxidative stress, and has adverse effects on activities of AChE and ATPases in crayfish.


Asunto(s)
Astacoidea/efectos de los fármacos , Fungicidas Industriales/toxicidad , Estrés Oxidativo/efectos de los fármacos , Pirimidinas/toxicidad , Estrobilurinas/toxicidad , Acetilcolinesterasa/efectos de los fármacos , Acetilcolinesterasa/metabolismo , Adenosina Trifosfatasas/efectos de los fármacos , Adenosina Trifosfatasas/metabolismo , Animales , Biomarcadores/metabolismo , Relación Dosis-Respuesta a Droga , Fungicidas Industriales/administración & dosificación , Glutatión/metabolismo , Glutatión Peroxidasa/metabolismo , Dosificación Letal Mediana , Pirimidinas/administración & dosificación , Estrobilurinas/administración & dosificación , Superóxido Dismutasa/metabolismo , Pruebas de Toxicidad Aguda
15.
PLoS One ; 15(6): e0234390, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32525917

RESUMEN

Fungicide use in the United States to manage soybean diseases has increased in recent years. The ability of fungicides to reduce disease-associated yield losses varies greatly depending on multiple factors. Nonetheless, historical data are useful to understand the broad sense and long-term trends related to fungicide use practices. In the current study, the relationship between estimated soybean yield losses due to selected foliar diseases and foliar fungicide use was investigated using annual data from 28 soybean growing states over the period of 2005 to 2015. For national and regional (southern and northern United States) scale data, mixed effects modeling was performed considering fungicide use as a fixed and state and year as random factors to generate generalized R2 values for marginal (R2GLMM(m); contains only fixed effects) and conditional (R2GLMM(c); contains fixed and random effects) models. Similar analyses were performed considering soybean production data to see how fungicide use affected production. Analyses at both national and regional scales showed that R2GLMM(m) values were significantly smaller compared to R2GLMM(c) values. The large difference between R2 values for conditional and marginal models indicated that the variation of yield loss as well as production were predominantly explained by the state and year rather than the fungicide use, revealing the general lack of fit between fungicide use and yield loss/production at national and regional scales. Therefore, regression models were fitted across states and years to examine their importance in combination with fungicide use on yield loss or yield. In the majority of cases, the relationship was nonsignificant. However, the relationship between soybean yield and fungicide use was significant and positive for majority of the years in the study. Results suggest that foliar fungicides conferred yield benefits in most of the years in the study. Furthermore, the year-dependent usefulness of foliar fungicides in mitigating soybean yield losses suggested the possible influence of temporally fluctuating abiotic factors on the effectiveness of foliar fungicides and/or target disease occurrence and associated loss magnitudes.


Asunto(s)
Fungicidas Industriales/farmacología , Enfermedades de las Plantas/prevención & control , Productos Agrícolas/efectos de los fármacos , Productos Agrícolas/crecimiento & desarrollo , Productos Agrícolas/microbiología , Hongos/efectos de los fármacos , Hongos/patogenicidad , Fungicidas Industriales/administración & dosificación , Fungicidas Industriales/provisión & distribución , Modelos Biológicos , Enfermedades de las Plantas/microbiología , Hojas de la Planta/efectos de los fármacos , /microbiología , Análisis Espacio-Temporal , Estados Unidos
16.
Food Chem ; 331: 127277, 2020 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-32544653

RESUMEN

A novel nanocomposite poly(ethylene-co-vinyl acetate) (EVA) film with controlled in vitro release of iprodione (ID) was prepared. Chitosan (CS) was used as the reinforcement which enhances the water and oxygen permeability of films. ID loaded poly(ethylene glycol)-poly(ε-caprolactone) (PEG-PCL) (IPP) micelles were used as the drug carrier which endows the films with antifungal and controlled release ability. IPP micelles with spherical shape and uniform size were obtained, and the maximum encapsulation efficacy (EE) was 91.17 ± 5.03% by well controlling the feeding amount of ID. Incorporation CS could improve the oxygen and moisture permeability of films, and the maximum oxygen permeability (OP) and water vapor transmission rate (WVTR) were 477.84 ± 13.03 cc/(m2·d·0.1 MPa) and 8.60 ± 0.25 g m-2 d-1, respectively. After loading IPP micelles, the films showed an improved antifungal ability and temperature-sensitive drug release behavior, and were found to enhance the quality of grapes by pre-harvest spraying.


Asunto(s)
Aminoimidazol Carboxamida/análogos & derivados , Hidantoínas/farmacocinética , Nanocompuestos/química , Vitis/efectos de los fármacos , Aminoimidazol Carboxamida/administración & dosificación , Aminoimidazol Carboxamida/farmacocinética , Quitosano/química , Preparaciones de Acción Retardada , Portadores de Fármacos , Microbiología de Alimentos , Fungicidas Industriales/administración & dosificación , Fungicidas Industriales/farmacocinética , Hidantoínas/administración & dosificación , Lactonas/química , Micelas , Oxígeno , Permeabilidad , Polietilenglicoles/química , Polivinilos/química , Vapor
17.
Biochem Biophys Res Commun ; 527(1): 42-48, 2020 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-32446389

RESUMEN

The fungicide Mancozeb is an endocrine-disrupting chemical and the mode of action of Mancozeb on embryo implantation is largely unknown. Mancozeb (1 and 3 µg/ml) significantly reduced Jeg-3 trophoblastic spheroids attachment to endometrial epithelial Ishikawa cells. Mancozeb treatment from gestation day (GD) 1 to GD8 or from GD4 to GD8 significantly lowered the number of implantation sites with higher incidence of morphological abnormalities in the reproductive tissues. However, these were not seen in the treatment from GD1 to GD4. Mancozeb at 30 mg/kg BW/d did not alter the expression of p53, COX-2, or PGFS transcripts in the uterus, but down-regulated the PGES transcript and protein. Mancozeb treatment in human endometrial stromal cells did not alter the decidualization response, but the morphological transformation was impaired. Taken together, exposure to Mancozeb affected embryo implantation probably through the modulation of decidualization and to delineate the exact mode of action needs further investigations.


Asunto(s)
Implantación del Embrión/efectos de los fármacos , Fungicidas Industriales/efectos adversos , Maneb/efectos adversos , Zineb/efectos adversos , Animales , Línea Celular , Femenino , Fungicidas Industriales/administración & dosificación , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Humanos , Masculino , Maneb/administración & dosificación , Ratones Endogámicos ICR , Zineb/administración & dosificación
18.
Regul Toxicol Pharmacol ; 113: 104655, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32268158

RESUMEN

The derivation of an apical endpoint point of departure (POD) from animal-intensive testing programs has been the traditional cornerstone of human health risk assessment. Replacement of in vivo chronic studies with novel approaches, such as toxicogenomics, holds promise for future alternative testing paradigms that significantly reduce animal testing. We hypothesized that a toxicogenomic POD following a 14 day exposure in the rat would approximate the most sensitive apical endpoint POD derived from a battery of chronic, carcinogenicity, reproduction and endocrine guideline toxicity studies. To test this hypothesis, we utilized myclobutanil, a triazole fungicide, as a model compound. In the 14 day study, male rats were administered 0 (vehicle), 30, 150, or 400 mg/kg/day myclobutanil via oral gavage. Endpoints evaluated included traditional apical, hormone, and liver and testis transcriptomic (whole genome RNA sequencing) data. From the transcriptomic data, liver and testis biological effect POD (BEPOD) values were derived. Myclobutanil exposure for 14 days resulted in increased liver weight, altered serum hormones, liver histopathology, and differential gene expression in liver and testis. The liver and testis BEPODs from the short-term study were 22.2 and 25.4 mg/kg/day, respectively. These BEPODs were approximately an order of magnitude higher than the most sensitive apical POD identified from the two year cancer bioassay based on testis atrophy (1.4 mg/kg/day). This study demonstrates the promise of using a short-term study BEPOD to derive a POD for human health risk assessment while substantially reducing animal testing.


Asunto(s)
Modelos Animales de Enfermedad , Fungicidas Industriales/toxicidad , Hígado/efectos de los fármacos , Nitrilos/toxicidad , Testículo/efectos de los fármacos , Toxicogenética , Triazoles/toxicidad , Administración Oral , Animales , Relación Dosis-Respuesta a Droga , Fungicidas Industriales/administración & dosificación , Hígado/metabolismo , Hígado/patología , Masculino , Nitrilos/administración & dosificación , Nivel sin Efectos Adversos Observados , Tamaño de los Órganos/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Testículo/metabolismo , Testículo/patología , Factores de Tiempo , Pruebas de Toxicidad Subaguda , Triazoles/administración & dosificación
19.
Toxins (Basel) ; 11(11)2019 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-31698851

RESUMEN

Aflatoxin (AF) contamination of maize is a major concern for food safety. The use of chemical fungicides is controversial, and it is necessary to develop new effective methods to control Aspergillus flavus growth and, therefore, to avoid the presence of AFs in grains. In this work, we tested in vitro the effect of six essential oils (EOs) extracted from aromatic plants. We selected those from Satureja montana and Origanum virens because they show high levels of antifungal and antitoxigenic activity at low concentrations against A. flavus. EOs are highly volatile compounds and we have developed a new niosome-based encapsulation method to extend their shelf life and activity. These new formulations have been successfully applied to reduce fungal growth and AF accumulation in maize grains in a small-scale test, as well as placing the maize into polypropylene woven bags to simulate common storage conditions. In this latter case, the antifungal properties lasted up to 75 days after the first application.


Asunto(s)
Aflatoxinas/biosíntesis , Aspergillus flavus/crecimiento & desarrollo , Grano Comestible/microbiología , Almacenamiento de Alimentos , Fungicidas Industriales/farmacología , Aceites Volátiles/farmacología , Zea mays/microbiología , Aspergillus flavus/metabolismo , Composición de Medicamentos , Grano Comestible/química , Contaminación de Alimentos/prevención & control , Fungicidas Industriales/administración & dosificación , Liposomas , Aceites Volátiles/administración & dosificación , Zea mays/química
20.
PLoS One ; 14(9): e0222854, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31560730

RESUMEN

The reduction of synthetic fungicides in agriculture is necessary to guarantee a sustainable production that protects the environment and consumers' health. Downy mildew caused by the oomycete Plasmopara viticola is the major pathogen in viticulture worldwide and responsible for up to 60% of pesticide treatments. Alternatives to reduce fungicides are thus utterly needed to ensure sustainable vineyard-ecosystems, consumer health and public acceptance. Essential oils (EOs) are amongst the most promising natural plant protection alternatives and have shown their antibacterial, antiviral and antifungal properties on several agricultural crops. However, the efficiency of EOs highly depends on timing, application method and the molecular interactions between the host, the pathogen and EO. Despite proven EO efficiency, the underlying processes are still not understood and remain a black box. The objectives of the present study were: a) to evaluate whether a continuous fumigation of a particular EO can control downy mildew in order to circumvent the drawbacks of direct application, b) to decipher molecular mechanisms that could be triggered in the host and the pathogen by EO application and c) to try to differentiate whether essential oils directly repress the oomycete or act as plant resistance primers. To achieve this a custom-made climatic chamber was constructed that enabled a continuous fumigation of potted vines with different EOs during long-term experiments. The grapevine (Vitis vinifera) cv Chasselas was chosen in reason of its high susceptibility to Plasmopara viticola. Grapevine cuttings were infected with P. viticola and subsequently exposed to continuous fumigation of different EOs at different concentrations, during 2 application time spans (24 hours and 10 days). Experiments were stopped when infection symptoms were clearly observed on the leaves of the control plants. Plant physiology (photosynthesis and growth rate parameters) were recorded and leaves were sampled at different time points for subsequent RNA extraction and transcriptomics analysis. Strikingly, the Oregano vulgare EO vapour treatment during 24h post-infection proved to be sufficient to reduce downy mildew development by 95%. Total RNA was extracted from leaves of 24h and 10d treatments and used for whole transcriptome shotgun sequencing (RNA-seq). Sequenced reads were then mapped onto the V. vinifera and P. viticola genomes. Less than 1% of reads could be mapped onto the P. viticola genome from treated samples, whereas up to 30% reads from the controls mapped onto the P. viticola genome, thereby confirming the visual observation of P. viticola absence in the treated plants. On average, 80% of reads could be mapped onto the V. vinifera genome for differential expression analysis, which yielded 4800 modulated genes. Transcriptomic data clearly showed that the treatment triggered the plant's innate immune system with genes involved in salicylic, jasmonic acid and ethylene synthesis and signaling, activating Pathogenesis-Related-proteins as well as phytoalexin synthesis. These results elucidate EO-host-pathogen interactions for the first time and indicate that the antifungal efficiency of EO is mainly due to the triggering of resistance pathways inside the host plants. This is of major importance for the production and research on biopesticides, plant stimulation products and for resistance-breeding strategies.


Asunto(s)
Fungicidas Industriales/administración & dosificación , Aceites Volátiles/administración & dosificación , Oomicetos/patogenicidad , Origanum/química , Enfermedades de las Plantas/prevención & control , Aceites de Plantas/administración & dosificación , Vitis/inmunología , Ciclopentanos/metabolismo , Resistencia a la Enfermedad/efectos de los fármacos , Resistencia a la Enfermedad/inmunología , Fumigación , Fungicidas Industriales/toxicidad , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/inmunología , Interacciones Huésped-Patógeno/efectos de los fármacos , Interacciones Huésped-Patógeno/inmunología , Inmunidad Innata/efectos de los fármacos , Aceites Volátiles/toxicidad , Oxilipinas/metabolismo , Fotosíntesis/efectos de los fármacos , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/microbiología , Aceites de Plantas/toxicidad , Sesquiterpenos/metabolismo , Vitis/efectos de los fármacos , Vitis/microbiología , Fitoalexinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...